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If the Trapezoid Rule is used on the interval [—1,9] withn = 5
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State how to compute the Simpson’s Rule approximation S(2n) if
the Trapezoid Rule approximations 7'(2n) and T'(n) are known.

Basic Skills

117-10. Absolute and relative error Compute the absolute and relative
errors in using ¢ to approximate Xx.

7. x=m c=314 8. x
10. x =¢; ¢ = 2718

11-14. Midpoint Rule approximations Find the indicated Midpoint
Rule approximations to the following integrals.

V2; ¢ = 1414
9, x=¢ c=272
10
11, f 24 dx using n = 1,2, and 4 subintervals
2
9
12, / x*dx using n = 1,2, and 4 subintervals
1
1
13, /0 sin7x dx using n = 6 subintervals
1
14, £E_’ dx using n = 8 subintervals

.ﬁl& Trapezoid Rule approximations Find the indicated Trapezoid
“approximations to the following integrals.

10
B, '/; 2x% dx using n = 2, 4, and 8 subintervals

1. If the interval [4, 18] is partitioned into n = 28 subintervals of
equal width, what is Ax?
2. Explain geometrically how the Midpoint Rule is used to approxi-
mate a definite integral.
3. Explain geometrically how the Trapezoid Rule is used to approxi-
mate a definite integral.
4, If the Midpoint Rule is used on the interval [ 1, 11] with n = 3
subintervals, at what x-coordinates is the integrand evaluated?
5.
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i119. Midpoint Rule, Trapezoid Rule and relative error Find the
Midpoint and Trapezoid Rule approximations to fgl sin x dx

using n = 25 subintervals. Compute the relative error of each
approximation.

17 20. Midpoint Rule, Trapezoid Rule and relative error Find the Mid-
point and Trapezoid Rule approximations to fol e “dxusingn = 50
subintervals. Compute the relative error of each approximation.

il 21-26. Comparing the Midpoint and Trapezoid Rules Apply the
Midpoint and Trapezoid Rules to the following integrals. Make a table
similar to Table 7.4 showing the approximations and errors for
n = 4,8, 16, and 32. The exact values of the integrals are given for

computing the error.
5 6 =
21. f (3x* — 2x) dx = 100 22 f (— - x) dx =
1 -2\16
/4 e
23, f 3sin2xdx =3 24, flnxa’x=1
0 1
o
25. / sinxcos3xdx =0
0

8 L=
26. / e ¥ dx =
0

1 27-30. Temperature data Hourly temperature data for Boulder, CO,
San Francisco, CA, Nantucket, MA, and Duluth, MN, over a 12-hr period
on the same day of January are shown in the figure. Assume that these data
are taken from a continuous temperature function T(t). The average
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53.

Normal distribution of heights The heights of U.S. men are
normally distributed with a mean of 69 in and a standard deviation
of 3 in. This means that the fraction of men with a height between
aand b (with @ < b) inches is given by the integral

b

1 =
e~ L0932 4

3V27 J,

What percentage of American men are between 66 and 72 inches
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Additional Exercises
54. Estimating error Refer to Theorem 7.2 and let f(x) = &~

in height? Use the method of your choice and experiment with the fii 55

number of subintervals until you obtain successive approximations
that differ by less than 1073,

Normal distribution of movie lengths A recent study revealed
that the lengths of U.S. movies are normally distributed with a
mean of 110 min and a standard deviation of 22 min. This means
that the fraction of movies with lengths between @ and b minutes
(with @ < b) is given by the integral

1 b
2V a

What percentage of U.S. movies are between 1 hr and 1.5 hr long
(60-90 min)?

e~[G-noynyn 4o

U.S. oil produced and imported The figure shows the rate at
which U.S. oil was produced and imported between 1920 and
2005 in units of millions of barrels per day. The total amount of
oil produced or imported is given by the area of the region under
the corresponding curve. Be careful with units because both days
and years are used in this data set.

a. Use numerical integration to estimate the amount of U.S, oil
produced between 1940 and 2000. Use the method of your
choice and experiment with values of ».

b. Use numerical integration to estimate the amount of oil
imported between 1940 and 2000. Use the method of your
choice and experiment with values of ».

\ U.S. Oil Production and Imports
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 Source:
: e: U.S. Energy Information Administration
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58.

59.

60.

61.

a. Find a Trapezoid Rule approximation to fole"z dx using
n = 50 subintervals.
b. Calculate f”(x).

¢. Explain why | f"(x)| < 18 on [0,1], given that e < 3.

d. Use Theorem 7.2 to find an upper bound on the absolute error
in the estimate found in part (a).

. Estimating error Refer to Theorem 7.2 and let f(x) = sine”,

a. Find a Trapezoid Rule approximation to fol sin (&) dx using
n = 40 subintervals.

b. Calculate f”(x).

¢ Explain why [ f”(x)| < 6 on [0,1], given that e < 3.
(Hint: Graph f".)

d. Find an upper bound on the absolute error in the estimate
found in part (a) using Theorem 7.2.

Exact Trapezoid Rule Prove that the Trapezoid Rule is exact
(no error) when approximating the definite integral of a linear
function,

Exact Simpson’s Rule Prove that Simpson’s Rule is exact (no
error) when approximating the definite integral of a linear
function and a quadratic function,

Shorteut for the Trapezoid Rule Prove that if you have
M(n) and T'(n) (a Midpoint Rule approximation and a
Trapezoid Rule approximation with n subintervals), then
T(2n) = (T(n) + M(n))/2.

Trapezoid Rule and concavity Suppose /S is positive and its

first two derivatives are continuous on [a,b].If £ is positive on
[a, b], then is a Trapezoid Rule estimate of fab f(x) dx an under-
estimate or overestimate of the integral? Justify your answer using
Theorem 7.2 and an illustration.

Shorteut for Simpson’s Rule Using the notation of the text, prove
4T(2n) — T(n)

that §(2n) = .

forn = 1.

Another Simpson’s Rule formula Another Simpson’s Rule
2M(n) + T(n)

3
estimate /| 1/x dx using n = 10 subintervals,

formula is §(2n) = for n = 1. Use this rule to

'QUICK CHECK| ANSWERS |

1. 4,6,8,10 2. Overestimates
4. 16 and 16

3. 4and 4




